Effects of water quality on infiltration, runoff and interrill erosion processes during simulated rainfall

Author(s):  
Lorenzo Borselli ◽  
Dino Torri ◽  
Jean Poesen ◽  
Pilar Salvador Sanchis
1994 ◽  
Vol 74 (1) ◽  
pp. 59-66 ◽  
Author(s):  
B. T. Bowman ◽  
G. J. Wall ◽  
D. J. King

The risk of surface-water contamination by herbicides is greatest following application to cropland when the active ingredients are at the maximum concentration and the soil is the most vulnerable to erosion following cultivation. This study determined the magnitude of surface runoff losses of herbicide and nutrients at, and subsequent to, application. The first of three weekly 10-min, 2.6-cm rainfalls were simulated on triplicated 1-m plots (a set) on which corn had been planted and the herbicide (metolachlor/atrazine, 1.5:1.0) and fertilizer (28% N at 123 kg ha−1) had just been applied. Identical simulations were applied to two other adjacent plot sets (protected from rainfall) 1 and 2 wk following herbicide application. Runoff (natural, simulated) was monitored for soil, nutrient and herbicide losses. Concentrations of total phosphorus in surface runoff water and nitrate N in field-filtered samples were not significantly influenced by the time of the rainfall simulation but exceeded provincial water-quality objectives. Atrazine and metolachlor runoff losses were greatest from simulated rainfall (about 5% loss) immediately following application. Subsequent simulated rainfall usually resulted in < 1% herbicide runoff losses. Herbicide concentrations in all plot runoff samples exceeded provincial drinking-water quality objectives. Since herbicide surface transport is primarily in the solution phase (not via association with soil particles), water-management conservation technologies are the key to retaining these chemicals on cropland. Key words: Herbicide, runoff, rainfall simulation, partitioning, water quality


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 189 ◽  
Author(s):  
Matjaž Glavan ◽  
Sara Bele ◽  
Miha Curk ◽  
Marina Pintar

Intensive agriculture causes nutrient leaching and accelerates erosion processes, which threatens the good quality status of surface waters, as proposed by the European Union (EU) Water Framework Directive. The purpose of this study was to define the impact of two alternative agricultural land-use change scenarios defined in a Municipal Spatial Plan on surface water quality by using the Agricultural Policy/Environmental eXtender (APEX) model. As experimental area, we chose a small Kožbanjšček stream catchment (1464 ha) situated in the Goriška Brda region in Slovenia. The area, due to favorable conditions for vineyards, is facing increasing deforestation. The change of 66.3 ha of forests to vineyards would increase the sediment, nitrate, and phosphorus loads in the stream by 24.8%, 17.1%, and 10.7%, respectively. With the implementation of vegetative buffer strips as a mitigation measure of the current situation, we could reduce the sediment, nitrate, and phosphorus loads by 17.9%, 11.1%, and 3.1%, respectively, while a combination of the two land-use change scenarios would result in a slight increase of the above-mentioned loads, corresponding to 0.61%, 2.1%, and 6.6%, respectively, compared to the baseline situation. The results confirm that, as we can increase pollution levels with deforestation, we can also reduce water pollution by choosing proper types of land management measures.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2412
Author(s):  
Brian Kronvang ◽  
Frank Wendland ◽  
Karel Kovar ◽  
Dico Fraters

The interaction between land use and water quality is of great importance worldwide as agriculture has been proven to exert a huge pressure on the quality of groundwater and surface waters due to excess losses of nutrients (nitrogen and phosphorous) through leaching and erosion processes. These losses result in, inter alia, high nitrate concentrations in groundwater and eutrophication of rivers, lakes and coastal waters. Combatting especially non-point losses of nutrients has been a hot topic for river basin managers worldwide, and new important mitigation measures to reduce the input of nutrients into groundwater and surface waters at the pollution source have been developed and implemented in many countries. This Special Issue of the Land use and Water Quality conference series (LuWQ) includes a total of 11 papers covering topics such as: (i) nitrogen surplus; (ii) protection of groundwater from pollution; (iii) nutrient sources of pollution and dynamics in catchments and (iv) new technologies for monitoring, mapping and analysing water quality.


Geoderma ◽  
2017 ◽  
Vol 299 ◽  
pp. 63-72 ◽  
Author(s):  
X.C. Zhang ◽  
M.A. Nearing ◽  
J.D. Garbrecht

2020 ◽  
Vol 202 ◽  
pp. 104673 ◽  
Author(s):  
Chenfeng Wang ◽  
Bin Wang ◽  
Yujie Wang ◽  
Yunqi Wang ◽  
Wenlong Zhang ◽  
...  

2018 ◽  
Vol 43 (7) ◽  
pp. 1451-1464 ◽  
Author(s):  
Changjia Li ◽  
Joseph Holden ◽  
Richard Grayson

2012 ◽  
Vol 77 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Z.H. Shi ◽  
B.J. Yue ◽  
L. Wang ◽  
N.F. Fang ◽  
D. Wang ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8487
Author(s):  
Yaxian Hu ◽  
Wolfgang Fister ◽  
Yao He ◽  
Nikolaus J. Kuhn

Background Crust formation affects soil erosion by raindrop impacted flow through changing particle size and cohesion between particles on the soil surface, as well as surface microtopography. Therefore, changes in soil microtopography can, in theory, be employed as a proxy to reflect the complex and dynamic interactions between crust formation and erosion caused by raindrop-impacted flow. However, it is unclear whether minor variations of soil microtopography can actually be detected with tools mapping the crust surface, often leaving the interpretation of interrill runoff and erosion dynamics qualitative or even speculative. Methods In this study, we used a laser scanner to measure the changes of the microtopography of two soils placed under simulated rainfall in experimental flumes and crusting at different rates. The two soils were of the same texture, but under different land management, and thus organic matter content and aggregate stability. To limit the amount of scanning and data analysis in this exploratory study, two transects and four subplots on each experimental flume were scanned with a laser in one-millimeter interval before and after rainfall simulations. Results While both soils experienced a flattening, they displayed different temporal patterns of crust development and associated erosional responses. The laser scanning data also allowed to distinguish the different rates of developments of surface features for replicates with extreme erosional responses. The use of the laser data improved the understanding of crusting effects on soil erosional responses, illustrating that even limited laser scanning provides essential information for quantitatively exploring interrill erosion processes.


2017 ◽  
Vol 9 (3) ◽  
pp. 471-471
Author(s):  
Tian Wang ◽  
Peng Li ◽  
Zongping Ren ◽  
Guoce Xu ◽  
Zhanbin Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document